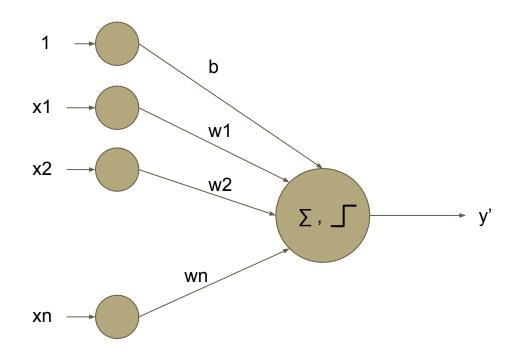
Perceptron

• Inspired by (simulation of) the human nervous system



$$y = sign(\sum_{i} w_i x_i + b)$$

Learning (iterative process):

- Initialize weights
- For each training item (**x**,**y**)

 \circ y' = g(w,x)

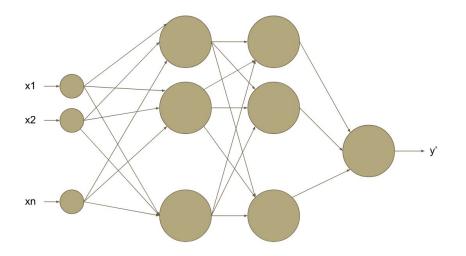
• update all weights

$$w_{i}^{'} = w_{i} + \alpha(y_{i} - y_{i}^{'})x_{i}$$

• Until convergence

- Can learn (converge) in linearly separable situations
- Finds (some!) linear separation

Neural networks with hidden layers



- Very powerful in capturing arbitrary functions
 - having non-linear activation functions; careful selection to facilitate learning
- Automatic generation of (higher-level) features!
 - last level is similar to logreg on generated (relevant) high-level features, not all quadratic, cubic, ... which easily go into hundreds of thousands.
- Drawbacks
 - computationally demanding learning (recently alleviated)
 - more layers more power more prone to overfitting
 - black-box models

Neural network - use (forward propagation)

Use of a neural network

$$h_{1}^{(2)} = g(w_{11}^{(1)}x_{1}^{+}w_{21}^{(1)}x_{2}^{+} \dots + w_{n1}^{(1)}x_{n})$$

$$h_{2}^{(2)} = g(w_{12}^{(1)}x_{1}^{+}w_{22}^{(1)}x_{2}^{+} \dots + w_{n2}^{(1)}x_{n})$$

$$\vdots$$

$$h_{m}^{(2)} = g(w_{1m}^{(1)}x_{1}^{+}w_{2m}^{(1)}x_{2}^{+} \dots + w_{nm}^{(1)}x_{n})_{x_{n}}$$

$$y' = g(w_{11}^{(2)}h_{1}^{(2)}+w_{21}^{(2)}h_{2}^{(2)} + \dots + w_{m1}^{(2)}h_{m}^{(2)})$$

Neural networks - learning

- Two things to learn:
 - Structure: expert knowledge and experimentation
 - Parameters/weights : <u>backpropagation</u> (and other optimization approaches)
 - Gradient descent (consequence: step \rightarrow sigmoid; error 0/1 \rightarrow (y-y')²)
 - Optimum can be local !
 - Weights must be initialized to random values
 - Can be done in a batch or online mode
 - One epoch : one learning iteration over training data
 - Overfitting problem stop on check with holdout, ...
 - Computationally demanding
 - EXAMPLE

Neural networks - learning of the structure

- Fully connected
 - Number of layers, number of nodes in layers
 - Experiment & select
- Not fully connected
 - Optimal brain damage
 - Create a fully connected ANN
 - Remove a connection (or a node)
 - Retrain & test
 - If not worse, keep and repeat
 - Constructive approaches: sequential adding of units (e.g., to tackle misclassified examples)
- ! Very large networks can memorize all the training data
- Specific structures: recurrent (internal state, dynamics, memory), convolutional, ...

Neural networks - multiple classes

